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The modulation instability (MI) induced by cross-phase modulation (XPM) in dispersion-decreasing fiber
(DDF), whose dispersion decreases along the direction of propagation, is solved and analyzed by the pertur-
bation method for the extended nonlinear Schrödinger equation, considering the higher-order dispersion.
The change of the gain spectra with incident power and dispersion decaying factor are also given respec-
tively. Due to the fourth-order dispersion, XPM occurs at two gain spectral regions in both the normal
and the anomalous dispersion regimes of DDF. The two gain spectral regions in the anomalous dispersion
regime are larger than those in the normal dispersion regime. Moreover, the gain spectrum of the sec-
ond region in the anomalous dispersion regime is near zero compared with that in the normal dispersion
regime, indicating that XPM can be easily produced in the anomalous dispersion regime. The spectral
width increases with the increase of the incident optical power and the dispersion decaying factor.
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Nonlinear dispersion relation produces modulation insta-
bility (MI), i.e., the exponential growth of the amplitude
of continuously weak perturbation caused by the interac-
tion between dispersion and nonlinearity[1]. Cross-phase
modulation (XPM), one main effect of nonlinearity, gives
rise to a nonlinear phase modulation of each channel in
a wavelength division multiplexing (WDM) system or
an optical time division multiplexing (OTDM) system,
depending on the overall power in all the other chan-
nels, with the power depending on the refractive index.
XPM generates a great deal of interest because it can be
used to realize all-optical demultiplexing, nonlinear pulse
switching, wavelength converter, and tunable high repe-
tition rate pulse trains[2−4]. Future ultrahigh bit-rate
OTDM systems may require all-optical demultiplexing
to down convert the high bit-rate data to where elec-
tronic circuits can be used. The most common device
is the nonlinear optical loop mirror (NOLM), which al-
lows switching due to XPM. As we know, NOLM relies
on a nonlinear phase switch[3,4]. XPM also affects the
waveform and spectrum of each optical signal during the
transmission. By controlling the evolution of the sig-
nal spectrum, we can utilize this property of XPM to
achieve efficient switching action for NOLM. Thus, it is
very important to analyze the influence of XPM caused
by higher-order dispersion to optical wave transmitting
in NOLM. However, XPM also leads to pulse impair-
ment and distortion, which seriously constrain the steady
transmission of optical waves in fiber. Several theoretical
and experimental studies measure the impact of XPM
in WDM system[5−10]. There are also many theoreti-
cal studies about the nonlinear phase noise and crosstalk
due to XPM[11−14]. Thus, the technologies to contain
or suppress pulse impairments due to XPM using dis-
persion management and compensation attract consider-

able attention because XPM significantly degrades the
quality of communication. One of them, for example,
is XPM suppressor for multi-span dispersion managed
WDM transmission[15,16]. Time domain phase conjuga-
tion (TDPC) and frequency domain phase conjugation
(FDPC) are the other methods to improve the suppres-
sion and compensation due to the distortion caused by
XPM[17].

However, the effect of XPM considering the higher-
order dispersion has yet to be fully investigated. With
the development of fiber communication, the emergence
of large capacity, high bit-rate, high input optical power,
and multi-channel in WDM and OTDM systems, the
XPM effect due to the third- and fourth-order dispersions
should be considered because this effect is inevitable and
strong enough. It is reasonable to neglect the higher-
order dispersion in common transmission because its in-
fluence is very little compared with that of group veloc-
ity dispersion (GVD). However, a previous experiment
reports about the experimental observation of a new MI
spectral window induced by the fourth-order dispersion
in a normally dispersive single-mode optical fiber[18].

The recent research shows that XPM in dispersion-
decreasing fiber (DDF), whose dispersion decreases along
the direction of propagation, is more obvious than that
in common standard single-mode fiber (SSMF); thus,
DDF is a better dispersion medium to produce MI than
the common SSMF[1]. In this letter, we study MI in-
duced by XPM in DDF based on the extended nonlin-
ear Schrödinger equation , while considering higher-order
dispersion. The dispersion equation to describe XPM
of higher-order dispersion is obtained theoretically. The
characteristics of gain spectra in both the normal and
the anomalous dispersion regimes of DDF are studied by
simulation. These provide theoretical bases upon which
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to discover ways to minimize the effect of XPM due to
higher-order dispersion in WDM systems and to design
new kinds of NOLMs.

Considering the effects of higher-order dispersion and
fiber loss, the extended nonlinear Schrödinger equation
describing any two optical waves transmitted in DDF can
be written as[19]
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where A(z, t) is the amplitude of slow-varying envelop
wave, t is time, z is transmission distance, vgj is group
velocity, and βkj is the kth coefficient of the GVD of the
jth optical wave. For common SSMF, β2j is a constant,
i.e., β2j(z) = β2j(0), whereas β2j(z) = β2j(0) exp(−µjz)
for DDF. Where µj is the dispersion decaying factor of
DDF, αj is the coefficient of fiber loss, and γj is the non-
linear coefficient. In order to mathematically distinguish
the two optical waves, we use subscripts 1 and 2 to de-
scribe them respectively. Suppose A1 = u1 exp(−α1z/2)
and A2 = u2 exp(−α2z/2). Substituting them into Eqs.
(1) and (2), we obtain
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Under the condition of continuous and quasi-
continuous waves, the amplitude uj at z = 0 is irrelative
with time. The steady-state solutions of Eqs. (3) and (4)
are given by
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where P1 and P2 are the incident power at z = 0. To
study the stability of the steady-state solution, perturb-
ing Eqs. (5) and (6) slightly, and suppose the perturba-
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Substituting Eqs. (7) and (8) into Eqs. (3) and (4), re-
spectively, and linearizing a1 and a2, the perturbations
a1 and a2 satisfy the following set of two coupled linear
equations, and are expressed as
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Equations (9) and (10) can be solved by assuming a gen-
eral solution of the form

aj = Uj cos(kz − ΩTj) + iVj sin(kz − ΩTj), j = 1, 2,
(11)

where k is the wave number, Ω is the angular frequency
of disturbance, and Tj = t− z/vgj (j=1,2) is delay time.
Substituting Eq. (11) into Eqs. (9) and (10), allowing
the real and imaginary parts of each equation be zero
respectively, one can obtain a set of equations about U1,
V1, U2, and V2. The sufficient and essential condition
with nontrivial solution of this set is the determinant of
the coefficient that should be zero, i.e.,
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Equation (12) becomes very complicated when fiber
loss and higher-order dispersion are considered. For sim-
plicity, suppose the third-order dispersions of two optical
waves with little difference, i.e., β31 ≈ β32 = β3. The
solution of Eq. (12) now becomes
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In Eq. (13), when the sign “±” is minus and CXPM >

f1f2, we have (k − β3

6
Ω3)2 < 0, and k is an imaginary

number at this time. Then the disturbances a1 and a2

increase exponentially according to Eq. (11), which leads
to MI phenomena when CXPM > f1f2.
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The definition of gain is[16] g(Ω) = 2Im(k). From Eq.
(14), we obtain
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In DDF, β2 = β2(0) exp (−µz). For simplicity, we
suppose the difference between the two optical waves is
very little, i.e., β21(0) ≈ β22(0) = β2(0), γ1 ≈ γ2 = γ,
α1 ≈ α2 = α, µ1 ≈ µ2 = µ, and β41 ≈ β42 = β4. The
condition of XPM CXPM > f1f2 can be written as
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Expanding it, we have
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Equation (17) can be written as
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When Eq. (18) is satisfied, XPM can occur and the four
parameters in Eq. (18) are
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when the former and later sign “±” being pluses cor-
responds Ω2
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4.
In the anomalous dispersion regime of DDF, β2 < 0

and β4 < 0. Thus, Ω2
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from Eq. (18) we should have
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Now we obtain Ω2
3 > 0 and Ω2
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Thus, Eq. (18) is satisfied when Ω is 0 < |Ω| < |Ω1|
or |Ω3| < |Ω| < |Ω4|. This means that XPM can occur in
two spectral regions, and that the fourth-order dispersion
leads to a new spectral region of XPM in the anomalous
dispersion regime.

In the normal dispersion regime of DDF, β2 > 0 and
β4 > 0. Thus, Ω2

1 > 0 and Ω2
3 < 0. To obtain Ω2
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Under this condition, one can obtain Ω2
1 > Ω2

2 > Ω2
4 >

0. XPM occurs in two regions, namely, 0 < |Ω| < |Ω4|
and |Ω2| < |Ω| < |Ω1|, indicating that in normal disper-
sion, the fourth-order dispersion also makes XPM appear
in two spectral regions. From Eq. (19) we know that the
fiber loss decreases the width of the spectral region.

XPM in DDF occurs in two spectral regions in the
normal and anomalous regimes. Suppose the spectral
region closer to zero is called the first spectral region
and the one that is far from zero is called the second
spectral region. The following figures can explicitly
illustrate the conclusion by numerical simulation us-
ing Matlab. The parameters are β2 = ±20 ps2/km,
β4 = ±0.02 ps4/km (the normal and anomalous disper-
sion regimes correspond to plus and minus, respectively),

γ = 2 W−1km−1, α = 0.2 dB/km, µ = 0.2 dB/km,
z= 10 km, and P2 = 10 W.

Figures 1 and 2 show the gains of the first and second
spectral regions in the normal and anomalous disper-
sion regimes for different P1/P2, respectively. As can be
seen, the second spectral region is the new spectral re-
gion of XPM caused by the fourth-order dispersion. We
can also find that the gains in the two regions increase
with the increase of P1/P2, i.e., XPM in DDF becomes
more obvious with the larger incident power of the opti-
cal waves, because the peak gain increases linearly with

Fig. 1. Gain spectra of the (a) first and (b) second spectral
regions in the normal dispersion regime.

Fig. 2. Gain spectra of the (a) first and (b) second spectral
regions in the anomalous dispersion regime.
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Fig. 3. Gain spectra of the (a) first and (b) second spectral
regions in the normal dispersion regime for different values of
µ.

Fig. 4. Width of the first gain spectral region in the normal
dispersion regime.

the incident power. The peak gain in the second spectral
region is higher than that in the first spectral region;
this physical phenomenon denotes that this MI of XPM
can be expected to produce periodic trains of ultra-short
pulses at higher repetition rates. Comparing Figs. 1 and
2, we find that the first and second spectral regions in
the anomalous dispersion regime are wider than those in
the normal dispersion regime, and the second spectral
region in the anomalous dispersion regime is closer to
the first spectral region than that in the normal disper-
sion regime. Although there are high and low peaks in
both normal and anomalous dispersion regimes, the high
peak in the anomalous dispersion regime is closer to the
first spectral region than that in the normal dispersion
regime. These indicate that XPM in DDF occurs more
easily in the anomalous dispersion regime.

Figure 3 shows the gains of the first and second spec-
tral regions in the normal dispersion regime for different
values of µ. As can be seen, the first spectral region
becomes wider with µ increasing for a certain transmis-
sion distance, and the second spectral region becomes
closer to the first spectral region because of the incre-
ment of µ. However, the spectral regions are far from
each other and the widths are small, it is difficult to di-
rectly compare them in Fig. 3. However, the numerical
simulation shows the widths of the spectral regions are
∆Ω1 = 0.0651 THz, ∆Ω2 = 0.0918 THz, ∆Ω3 = 0.1297
THz, and ∆Ω4 = 0.1830 THz corresponding to values of
µ that range from 0.1 to 0.4. It means that the second
spectral region becomes wider and closer to the first
spectral region with the increase of µ, and the same
phenomenon occurs in the anomalous dispersion regime.
These indicate that the dispersion decaying factor µ is
beneficial to the production of MI induced by XPM in
DDF.

Figure 4 shows the relation between the width of the

first spectral region in the normal dispersion regime
and the transmission distance z for different values of
µ. From Fig. 4, we know that due to the effect of
fiber loss, the spectral region becomes narrower with the
increase of transmission distance. The main reason is
that the intensity of the optical wave and the nonlinear
effect become smaller with the increment of transmission
distance due to fiber loss. However, the decreasing ten-
dency becomes slower with the increase of µ, and when
µ = 0.2 dB/km, the width of the spectral region is almost
unchangeable with variations in transmission distance z.
This indicates that DDF is a better dispersion medium
to produce XPM.

In conclusion, we study the MI induced by XPM in
DDF based on extended nonlinear Schrödinger equation
considering higher-order dispersion. Using this method,
we obtain a general dispersion equation to describe XPM
and numerically simulate it. The result shows that XPM
in DDF occurs at two spectral regions in the normal
and anomalous dispersion regimes due to the effect of
the fourth-order dispersion. The spectral regions in the
anomalous dispersion regime are wider than those in the
normal dispersion regime, and the second spectral region
in the anomalous dispersion regime is closer to the first
spectral region than that in the normal dispersion regime,
which indicates that XPM in DDF occurs more easily
in the anomalous dispersion regime. The gain spectra
become wider with the increase of P1/P2, i.e., the gain
spectra become wider with larger incident power of the
two optical waves. Furthermore, we find that the second
spectral regions in the normal and anomalous regimes
become wider and closer to the first spectral region with
increasing values of µ. XPM in DDF also becomes in-
creasingly obvious, which indicates that DDF is a better
dispersion medium to create XPM. These findings pro-
vide theoretical bases upon which to discover ways to
minimize the effect of XPM due to the higher-order dis-
persion in WDM systems and to design new kinds of
NOLMs.

This work was supported by the National Natural Sci-
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